4th Grade Science — Performance Level Descriptors

Reporting Categories	Needs Support	Close	Ready	Exceeding
Interpretation of Data

Students apply science knowledge, skills, and practices to understand the results of data analysis and to evaluate conclusions and predictions from simple data presentations, graphs, and diagrams of varying complexity.

A student performing at the Needs Support level:
- selects one piece of data from a simple data presentation.
- identifies features of a simple table, graph, or diagram (e.g., axis labels, units of measure).

A student performing at the Close level:
- selects one piece of data from a moderately complex data presentation.
- identifies features of a moderately complex table, graph, or diagram (e.g., axis labels, units of measure).
- understands common scientific terminology, symbols, and units of measure used in a moderately complex scientific context.
- translates moderately complex information into a table, graph, or diagram.
- determines how the value of a variable changes as the value of another variable changes in a moderately complex data presentation.
- compares data from a moderately complex data presentation (e.g., find the highest/lowest value, order data from a table).
- compares data from two or more moderately complex data presentations (e.g., compare a value in a table to a value in a graph).
- combines data from two or more moderately complex data presentations (e.g., combine categories data from a table using a scale from another table).
- determines and/or uses a mathematical relationship that exists between simple data (e.g., averaging, data, unit conversions).
- performs an extrapolation using data in a moderately complex table or graph.
- evaluates the design or methods of a moderately complex experiment.
- explains how to perform an analysis of a moderately complex data presentation.
- selects one piece of data from a complex data presentation.
- translates complex information into a table, graph, or diagram.
- determines the value of a variable changes as the value of another variable changes in a complex data presentation.
- compares data from a complex data presentation (e.g., find the highest/lowest value, order data from a table).
- compares data from two or more complex data presentations (e.g., compare a value in a table to a value in a graph).
- combines data from two or more complex data presentations (e.g., combine categories data from a table using a scale from another table).
- determines and/or uses a mathematical relationship that exists between simple data (e.g., averaging, data, unit conversions).
- performs an extrapolation using data in a complex table or graph.
- evaluates the design or methods of a complex experiment.
- explains how to perform an analysis of a complex data presentation.

Introduction of Data

A student performing at the Needs Support level:
- finds information in text that describes a simple experiment.
- identifies similarities and differences between simple experiments.
- determines which simple experiments utilize a given tool, method, or aspect of design.
- understands a simple experimental design.
- determines the scientific question that is the basis for a simple experiment (e.g., the hypothesis).
- predicts the results of an additional trial or measurement in a simple experiment.

A student performing at the Close level:
- finds information in text that describes a moderately complex experiment.
- identifies similarities and differences between moderately complex experiments.
- determines which moderately complex experiments utilized a given tool, method, or aspect of design.
- understands the methods, tools, and functions of tools used in a simple complex experiment.
- understands a moderately complex experimental design.
- determines the scientific question that is the basis for a moderately complex experiment (e.g., the hypothesis).
- evaluates the design or methods of a simple complex experiment (e.g., possible flaws or inconsistencies; precision and accuracy issues).
- predicts the results of an additional trial or measurement in a moderately complex experiment.
- selects one piece of data from a moderately complex data presentation and/or pieces of information in text.
- identifies features of a moderately complex table, graph, or diagram (e.g., axis labels, units of measure).

A student performing at the Ready level:
- finds information in text that describes a complex experiment.
- identifies similarities and differences between complex experiments.
- determines which complex experiments utilized a given tool, method, or aspect of design.
- understands the methods, tools, and functions of tools used in a moderately complex experiment.
- understands a complex experimental design.
- determines the scientific question that is the basis for a complex experiment (e.g., the hypothesis).
- evaluates the design or methods of a complex experiment (e.g., possible flaws or inconsistencies; precision and accuracy issues).
- predicts the results of an additional trial or measurement in a complex experiment.
- selects one piece of data from a complex data presentation and/or pieces of information in text.
- identifies features of a complex table, graph, or diagram (e.g., axis labels, units of measure).

A student performing at the Exceeding level:
- finds information in text that describes a more complex experiment.
- identifies similarities and differences between complex experiments.
- determines which complex experiments utilized a given tool, method, or aspect of design.
- understands the methods, tools, and functions of tools used in a moderately complex experiment.
- understands a complex experimental design.
- determines the scientific question that is the basis for a more complex experiment (e.g., the hypothesis).
- evaluates the design or methods of a complex experiment (e.g., possible flaws or inconsistencies; precision and accuracy issues).
- predicts the results of an additional trial or measurement in a complex experiment.
- selects one piece of data from a complex data presentation and/or pieces of information in text.

Scientific Investigation

A student applies science knowledge, skills, and practices to understand the tools, procedures, and design of scientific experiments and to compare, extend, and modify these theories.

A student performing at the Needs Support level:
- class does not consistently demonstrate the science knowledge, skills, and practices measured by the Needs Support level of Models, Inferences, and Experimental Results.

A student performing at the Close level:
- class does not consistently demonstrate the science knowledge, skills, and practices measured by the Needs Support level of Models, Inferences, and Experimental Results.

A student performing at the Ready level:
- class consistently demonstrates the science knowledge, skills, and practices measured by the Needs Support level of Models, Inferences, and Experimental Results.

A student performing at the Exceeding level:
- class consistently demonstrates the science knowledge, skills, and practices measured by the Needs Support level of Models, Inferences, and Experimental Results.

Evaluation of Models, Inferences, and Experimental Results

Students apply science knowledge, skills, and practices to evaluate the validity of scientific information and formulate conclusions and predictions based on that information.

A student performing at the Needs Support level:
- finds information in text that describes a simple experiment.
- identifies similarities and differences between simple experiments.
- determines which simple experiments utilize a given tool, method, or aspect of design.
- understands a simple experimental design.
- determines the scientific question that is the basis for a simple experiment (e.g., the hypothesis).
- predicts the results of an additional trial or measurement in a simple experiment.

A student performing at the Close level:
- finds information in text that describes a moderately complex experiment.
- identifies similarities and differences between moderately complex experiments.
- determines which moderately complex experiments utilized a given tool, method, or aspect of design.
- understands the methods, tools, and functions of tools used in a simple complex experiment.
- understands a moderately complex experimental design.
- determines the scientific question that is the basis for a moderately complex experiment (e.g., the hypothesis).
- evaluates the design or methods of a simple complex experiment (e.g., possible flaws or inconsistencies; precision and accuracy issues).
- predicts the results of an additional trial or measurement in a moderately complex experiment.
- selects one piece of data from a moderately complex data presentation and/or pieces of information in text.
- identifies features of a moderately complex table, graph, or diagram (e.g., axis labels, units of measure).

A student performing at the Ready level:
- finds information in text that describes a complex experiment.
- identifies similarities and differences between complex experiments.
- determines which complex experiments utilized a given tool, method, or aspect of design.
- understands the methods, tools, and functions of tools used in a moderately complex experiment.
- understands a complex experimental design.
- determines the scientific question that is the basis for a complex experiment (e.g., the hypothesis).
- evaluates the design or methods of a complex experiment (e.g., possible flaws or inconsistencies; precision and accuracy issues).
- predicts the results of an additional trial or measurement in a complex experiment.
- selects one piece of data from a complex data presentation and/or pieces of information in text.
- identifies features of a complex table, graph, or diagram (e.g., axis labels, units of measure).

A student performing at the Exceeding level:
- finds information in text that describes a more complex experiment.
- identifies similarities and differences between complex experiments.
- determines which complex experiments utilized a given tool, method, or aspect of design.
- understands the methods, tools, and functions of tools used in a moderately complex experiment.
- understands a complex experimental design.
- determines the scientific question that is the basis for a more complex experiment (e.g., the hypothesis).
- evaluates the design or methods of a complex experiment (e.g., possible flaws or inconsistencies; precision and accuracy issues).
- predicts the results of an additional trial or measurement in a complex experiment.
- selects one piece of data from a more complex data presentation and/or pieces of information in text.
- identifies features of a more complex table, graph, or diagram (e.g., axis labels, units of measure).

Simple Data Presentations and Experiments for the Elementary School Grade Band

Concepts/questions encompassed in a simple data presentation or experiment:
- Concepts are likely to be familiar to or readily understood by elementary school students regardless of their exposure to rigorous science instruction even if not fully understood, such as temperature
- Concepts/quantities encompassed in a complex data presentation or experiment:
- Concepts are likely to be familiar to or readily understood by elementary school students regardless of their exposure to rigorous science instruction even if not fully understood, such as temperature

Moderately Complex Data Presentations and Experiments for the Elementary School Grade Band

Concepts/questions encompassed in a moderately complex data presentation or experiment:
- Concepts are likely to be familiar to or readily understood by elementary school students regardless of their exposure to rigorous science instruction even if not fully understood, such as temperature

Complex Data Presentations and Experiments for the Elementary School Grade Band

Concepts/questions encompassed in a complex data presentation or experiment:
- Concepts are likely to be familiar to or readily understood by elementary school students regardless of their exposure to rigorous science instruction even if not fully understood, such as temperature
- Concepts/quantities encompassed in a more complex data presentation or experiment:
- Concepts are likely to be familiar to or readily understood by elementary school students regardless of their exposure to rigorous science instruction even if not fully understood, such as temperature

© 2016 by ACT, Inc. All rights reserved. Confidential and secure. Not for redistribution.